Weighted shift matrices: Unitary equivalence, reducibility and numerical ranges

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher–rank Numerical Ranges of Unitary and Normal Matrices

We verify a conjecture on the structure of higher-rank numerical ranges for a wide class of unitary and normal matrices. Using analytic and geometric techniques, we show precisely how the higher-rank numerical ranges for a generic unitary matrix are given by complex polygons determined by the spectral structure of the matrix. We discuss applications of the results to quantum error correction, s...

متن کامل

Constraint Unitary Dilations and Numerical Ranges

It is shown that each contraction A on a Hilbert space H, with A + A I for some 2 R, has a unitary dilation U on H H satisfying U + U I. This is used to settle a conjecture of Halmos in the aarmative: The closure of the numerical range of each contraction A is the intersection of the closures of the numerical ranges of all unitary dilations of A. By means of the duality theory of completely pos...

متن کامل

Matrices with Circular Symmetry on Their Unitary Orbits and C-numerical Ranges

We give equivalent characterizations for those n x n complex matrices A whose unitary orbits %?(A) and C-numerical ranges WC{A) satisfy ei8&(A) = f/(A) or e'e WC(A) = WC(A) for some real 0 (or for all real 0 ). In particular, we show that they are the block-cyclic or block-shift operators. Some of these results are extended to infinite-dimensional Hubert spaces.

متن کامل

Hermitian octonion matrices and numerical ranges

Notions of numerical ranges and joint numerical ranges of octonion matrices are introduced. Various properties of hermitian octonion matrices related to eigenvalues and convex cones, such as the convex cone of positive semidefinite matrices, are described. As an application, convexity of joint numerical ranges of 2×2 hermitian matrices is characterized. Another application involves existence of...

متن کامل

Ela Hermitian Octonion Matrices and Numerical Ranges

Notions of numerical ranges and joint numerical ranges of octonion matrices are introduced. Various properties of hermitian octonion matrices related to eigenvalues and convex cones, such as the convex cone of positive semidefinite matrices, are described. As an application, convexity of joint numerical ranges of 2×2 hermitian matrices is characterized. Another application involves existence of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2013

ISSN: 0024-3795

DOI: 10.1016/j.laa.2012.08.018